Bibliography¶
\begin{thebibliography}{99}
[1] \bibitem{givens}
Ryan Givens, O. F. de Alcantara Bonfim and Robert B. Ormond,
"Direct observation of normal modes in coupled oscillators",
Am. J. Phys. {\bf 71} (1), 87-90 (2003).
[2] \bibitem{kannewurf}
C. R. Kannewurf and Harald C. Jensen,
"Coupled Oscillations",
Am. J. Phys. 25, 442-445 (1957);
[3] \bibitem{band}
William Band and A. D. Bhatti,
"Energy Propagation in a Finite Lattice",
Am. J. Phys. 33, 930-933 (1965).
[4] \bibitem{chaturvedi}
D. K. Chaturvedi and J. S. Baijal,
"Normal Modes of Oscillation for a Finite One-Dimensional Diatomic Lattice",
Am. J. Phys. 42, 482-486 (1974).
[5] \bibitem{lee}
S. M. Lee,
"Exact Normal-Mode Analysis for a Linear Lattice with “Periodic Impurities",
Am. J. Phys. 37, 888-894 (1969).
[6] \bibitem{weinstock}
Robert Weinstock,
"Normal-Mode Frequencies of Finite One-Dimensional Lattices with Single Mass Defect: Exact Solutions",
Am. J. Phys. 39, 484-502 (1971).
[7] \bibitem{weinstock2}
Robert Weinstock,
"Oscillations of a particle attached to a heavy spring: An application of the Stieltjes integral",
Am. J. Phys. 47, 508 (1979)
[8] \bibitem{louck}
James D. Louck,
"Exact Normal Modes of Oscillation of a Linear Chain of Identical Particles",
Am. J. Phys. 30, 585-590 (1962)
[9] \bibitem{kesavasamy1}
K. Kesavasamy and N. Krishnamurthy, "Lattice vibrations in a linear triatomic chain", Am. J. Phys. {\bf 46}(8), 815-819 (1978);
[10] \bibitem{kesavasamy2}
K. Kesavasamy and N. Krishnamurthy,
"Vibrations of a one‐dimensional defect lattice",
Am. J. Phys. {\bf 47}(11), 968-973 (1979).
[11] \bibitem{bhattacharya}
M. Bhattacharya, H. Shi and S. Preble,
"Coupled second-quantized oscillators",
Am. J. Phys. {\bf 81}(4), 267-273 (2013)
[12] \bibitem{cushing}
James T. Cushing,
"The spring‐mass system revisited"
Am. J. Phys. {\bf 52}(10), 925-933 (1984); The method of characteristics applied to the massive spring problem, 52, 933 (1984).
[13] \bibitem{bloodmazur}
Paul Mazur and Frank A. Blood Jr.,
"Comparison of Normal Modes of an End-Weighted Discrete and Continuous Linear Chain",
Am. J. Phys. 40, 1694-1696 (1972)
[14] \bibitem{berg}
Richard E. Berg and Todd S. Marshall
"Wilberforce pendulum oscillations and normal modes",
Am. J. Phys. {\bf 59}(1), 32-38 (1991).
[15] \bibitem{kashy}
E. Kashy, D. A. Johnson, J. McIntyre and S. L. Wolfe,
"Transverse standing waves in a string with free ends",
Am. J. Phys. {\bf 65}(4), 310-313 (1997).
[16] \bibitem{jihui}
D. Jihui and C. T. P. Wang, "Demonstration of longitudinal standing
waves in a pipe revisited", Am. J. Phys. 53, 1110 (1985).
[17] \bibitem{ficken}
G. Ficken and F. Stephenson, "Comments on the Rubens flame tube",
Am. J. Phys. 54, 297 (1986).
[18] \bibitem{perov}
Polievkt Perov, Walter Johnson and Nataliia Perova-Mello,
"The physics of guitar string vibrations",
Am. J. Phys. {\bf 84}(1), 38-43 (2016).
[19] \bibitem{whitfield}
Scott B. Whitfield and Kurt B. Flesch,
"An experimental analysis of a vibrating guitar string using high-speed photography",
Am. J. Phys. {\bf 82}(2), 102-109 (2014).
[20] \bibitem{politzer}
David Politzer,
"The plucked string: An example of non-normal dynamics",
Am. J. Phys. {\bf 83}(5), 395-402 (2015).
[21] \bibitem{rossing}
Thomas D. Rossing,
"Normal modes of a compound string",
Am. J. Phys. {\bf 43}(8), 735-736 (1975).
[22] \bibitem{rawitscher}
George Rawitscher and Jakob Liss,"The vibrating inhomogeneous string",
Am. J. Phys. {\bf 79}(4), 417-427 (2011).
[23] \bibitem{forbes}
G. W. Forbes and M. A. Alonso,
"Measures of spread for periodic distributions and the associated uncertainty relations",
Am. J. Phys. {\bf 69}(3), 340-347 (2001).
ibid.,
"Consistent analogs of the Fourier uncertainly relation",
Am. J. Phys. {\bf 69}(10), 1091-1095 (2001).
[24] \bibitem{oleary}
Austin J. O'Leary,
"Elementary Derivation of Equations for Wave Speeds",
Am. J. Phys. 22, 327-334 (1954).
[25] \bibitem{sineseries}
John Playfair, "On the trigonometric tables of the Brahmins", Transactions of the Royal Society of Edinburgh, Vol. IV, 1798.
[26] \bibitem{vonkarman}
N. W. Ashcroft and N. D. Mermin, "Solid State Physics", Chapter 22, pp. 430-431, Holt, Rinehart and Winston, New York, 1976.
[27] \bibitem{fixedbc}
H. J. Pain, "The Physics of Vibrations and Waves", Chapter 4, pp. 90-95, Sixth Edition, Wiley 2005.
\end{thebibliography}